

SLT 2024 Challenge Session Singing Voice Deepfake Detection Overview and Results

You Zhang¹, Yongyi Zang¹, Jiatong Shi², Ryuichi Yamamoto³, Tomoki Toda³, and **Zhiyao Duan¹**

¹ University of Rochester
 ² Carnegie Mellon University
 ³ Nagoya University

Macau, China - Dec 2, 2024

CULTURE / TECHNOLOGY

Music has a consent problem with A.I. voice models

UMG is teaming up with a company to build A.I. clones of their artists and joining a lawsuit against other companies that create unauthorized models.

By **JORDAN DARVILLE** June 24, 2024

Al songs that mimic popular artists raising alarms in the music industry

"I think artists should be more afraid," one producer says.

By <u>Nathan Smith</u>, <u>Emily Lippiello</u>, and <u>Ivan Pereira</u> November 3, 2023, 2:44 PM The New Hork Times

Will A.I. Replace Pop Stars?

An A.I.-generated track with fake Drake and the Weeknd vocals went viral. Would you listen to a song sang by a computer?

Demo of singing voice deepfakes

https://www.youtube.com/watch?v=dHBOKfHZwL8

Life Is a Highway (Song by Rascal Flatts, Covered by AI Taylor Swift)

Singing voice deepfake generation

Xie et al. "FSD: An Initial Chinese Dataset for Fake Song Detection", in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2024.

Singing Voice Deepfake Detection (SVDD)

• Aims to detect Al-generated singing voices

Zhiyao Duan

Evaluation metric

• Equal Error Rate (EER)

Preliminary work: SingFake

Table 1	. SingFake	statistics	for	each	split.
---------	------------	------------	-----	------	--------

Splits	Description	# Singers	Languages (Sorted by percentages in the splits)	# Clips (Real / Fake)
Train	Training set	12	Mandarin, Cantonese, Japanese, English, Others	5251 / 4519
Val	Validation set (unseen singers)	4	Mandarin, Cantonese, English, Spanish, Japanese	1089 / 543
T01	Test set for seen singer Stefanie Sun	1	Mandarin, Cantonese, Japanese, English, Others	370 / 1208
T02	Test set for unseen singers	6	Cantonese, Mandarin, Japanese	1685 / 1006
T03	T02 over 4 communication codecs	6	Cantonese, Mandarin, Japanese	6740 / 4024
T04	Test set for Persian musical context	17	Persian, English	353 / 166

Table 2. Test results on speech and singing voice with CM systemstrained on speech utterance from ASVspoof2019LA (EER (%)).

 Speech anti-spoofing models heavily degrade on SVDD task!

Mathad	ASVspoof2019	SingFake-T02			
Methou	LA - Eval	Mixture	Vocals		
AASIST	0.83	58.12	37.91		
Spectrogram+ResNet	4.57	51.87	37.65		
LFCC+ResNet	2.41	45.12	54.88		
Wav2Vec2+AASIST	7.03	56.75	57.26		

Yongyi Zang*, You Zhang*, Mojtaba Heydari, and Zhiyao Duan. "SingFake: Singing Voice Deepfake Detection", in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2024. (* equal contribution)

Preliminary work: SingFake Results of training on SingFake data

	Song Singer Codec Context	Seen Seen Seen Seen	Unseen Seen Seen Seen	Unseen Unseen Seen Seen	Unseen Unseen Unseen Seen	Unseen Unseen Unseen Unseen	Trained on speech
Method	Setting	Train	T01	T02	T03	T04	T02
AASIST	Mixture	4.10	7.29	11.54	17.29	38.54	58.12
AASIST	Vocals	3.39	8.37	10.65	13.07	43.94	37.91
Spectrogrom (DecNet	Mixture	4.97	14.88	22.59	24.15	48.76	51.87
Spectrogram+Resiver	Vocals	5.31	11.86	19.69	21.54	43.94	37.65
LECC PerNet	Mixture	10.55	21.35	32.40	31.85	50.07	45.12
LFCC+ResNet	Vocals	2.90	15.88	22.56	23.62	39.27	54.88
Way 2Vac2 (A A SIST (Joint finature)	Mixture	1.57	4.62	8.23	13.62	42.77	56.75
wavzvecz+AASISI (Joint-Intelune)	Vocals	1.70	5.39	9.10	10.03	42.19	57.26

- Training on singing voices improves SVDD performance
- SVDD systems show limited robustness to unseen scenarios

Yongyi Zang*, You Zhang*, Mojtaba Heydari, and Zhiyao Duan. "SingFake: Singing Voice Deepfake Detection", in *Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2024. (* equal contribution)

Singing Voice Deepfake Detection (SVDD) challenge

- CtrSVDD (Controlled setting)
 - Clean vocals generated by state-of-the-art singing voice synthesis (SVS) and singing voice conversion (SVC) systems based on open-source pop song datasets

https://svddchallenge.org

- WildSVDD (In-the-wild setting)
 - Expanded SingFake dataset with newly collected data

Zhang, Y., Zang, Y., Shi, J., Yamamoto, R., Toda, T., & Duan, Z. (2024). SVDD 2024: The inaugural singing voice deepfake detection challenge. *Proc. IEEE Spoken Language Technology Workshop (SLT)*.

CtrSVDD Dataset

- 307.98 hours total (220,798 mono vocal clips)
 - 47.64 hours of bonafide vocals from Ο open-source singing datasets
 - 260.34 hours of deepfake vocals Ο using 14 synthesis methods
- 164 singer identities
- Average clip length: 5.02 seconds, 16 kHz sample rate
- Fully accessible under CC BY-NC-ND 4.0 license

evaluation set

Zang, Y., Shi, J., Zhang, Y., Yamamoto, R., Han, J., Tang, Y., Xu, S., Zhao, W., Guo, J., Toda, T., Duan, Z. (2024) CtrSVDD: A Benchmark Dataset and Baseline Analysis for Controlled Singing Voice Deepfake Detection. Proc. Interspeech 2024, 4783-4787, doi: 10.21437/Interspeech.2024-2242

Туре

evaluation set

Zang, Y., Shi, J., Zhang, Y., Yamamoto, R., Han, J., Tang, Y., Xu, S., Zhao, W., Guo, J., Toda, T., Duan, Z. (2024) CtrSVDD: A Benchmark Dataset and Baseline Analysis for Controlled Singing Voice Deepfake Detection. Proc. Interspeech 2024, 4783-4787, doi: 10.21437/Interspeech.2024-2242 11

Description

CtrSVDD	Dataset
---------	---------

Model

System

				_
A01	XiaoiceSing	SVS	Cascaded Transformer model with a HiFi-GAN vocoder	A0
A02	VISinger	SVS	End-to-end VAE with a HiFi-GAN vocoder	
A03	VISinger2	SVS	End-to-end VAE with a DDSP vocoder	
A04	NNSVS	SVS	Cascaded diffusion model with a source-filter HiFi-GAN	(
A05	Naive RNN	SVS	Cascaded LSTM model with a HiFi-GAN vocoder	tı
A06	NU-SVC	SVC	NNSVS model with ContentVec linguistic features	
A07	Soft-VITS-SVC	SVC	Soft-VITS model with WavLM linguistic features	
A08	Soft-VITS-SVC	SVC	Soft-VITS model with ContentVec linguistic features	A
A09	Soft-VITS-SVC	SVC	Soft-VITS model with additional source-filter HiFi-GAN	
A10	Soft-VITS-SVC	SVC	Soft-VITS model with MR-HuBERT linguistic features	
A11	Soft-VITS-SVC	SVC	Soft-VITS model with WavLabLM linguistic features	A13
A12	DiffSinger	SVS	Cascaded Transformer model with a post diffusion module	
A13	Soft-VITS-SVC	SVC	Soft-VITS model with Chinese HuBERT linguistic features	
A14	ACESinger	SVS	Blackbox commercial system with manual tuning	

WildSVDD Dataset

- Expanded SingFake with newly collected data
 - Nearly 2x SingFake
 - Multi-lingual: Mandarin, Cantonese, Korean, English, Japanese,
 Others...
 - Removed expired videos
- Freely split development set from the training set
- Test sets:
 - Test A: Unseen singers, similar to T02 in SingFake
 - Test B: Unseen musical context, same as T04 in SingFake

Zenodo link

Baseline system

- AASIST: a graph-neural-network based backbone, well-recognized in speech antispoofing task
- Can be integrated with different front-ends:
 - Spectrogram
 - Mel-spectrogram
 - MFCC
 - LFCC
 - Raw waveform
 - Self-Supervised Learning (SSL) feature (wav2vec)

CtrSVDD challenge results

- 47 submissions, 37 out of which surpassed baselines
- Best performance: 1.65% EER

Team Name	Results (w/o ACESinger)		Results (overall)			Per-Attack EER				Per-Dataset EER		ACESinger (A14)
	EER (%)	Rank	EER (%)	Rank	A09	A10	A11	A12	A13	KiSing	M4Singer	
Fosafer Speech	1.65	1	4.32	1	0.23	0.06	0.37	4.19	0.07	2.66	1.69	49.67
NBU_MIŜL	2.00	2	8.41	19	0.13	0.11	0.94	5.17	0.10	8.98	2.07	50.02
I2R-ASTAR	2.22	3	4.86	3	0.65	0.51	2.49	4.57	0.64	6.01	2.16	50.02
Qishan	2.32	4	4.45	2	1.02	0.69	2.54	4.42	0.76	2.82	2.32	50.05
Breast waves	2.73	5	5.38	5	1.50	0.76	2.03	6.14	0.88	3.56	2.84	50.44
MediaForensics	2.75	6	5.83	8	0.56	0.38	3.90	4.45	1.02	10.56	2.56	49.91
beyond	2.99	7	5.68	7	0.45	0.26	4.56	4.37	0.85	9.12	2.85	49.53
Star	3.31	8	5.21	4	1.64	0.19	1.11	7.30	0.23	1.79	3.51	49.70

- A12 (diffusion-based) is a bit challenging
- A14 (out-of-domain) data is quite challenging

CtrSVDD winning solutions

- SSL features and ensemble learning are common winning strategies
- Most methods adapt from speech deepfake detection methods
- Lack specific design for singing voice

WildSVDD challenge results

• 4 teams participated, all surpassed baselines

Team	Methods Used	EER on test_A	EER on test_B
UNIBS1	Log-spectrogram+ResNet - Vocals	2.38	9.81
UNIBS2	Log-spectrogram+ResNet - Mixtures	2.70	12.19
IMS-SCU1	Ensemble - Vocals	2.70	12.95
IMS-SCU2	WavLM - Vocals	3.54	15.32
IMS-SCU3	Ensemble - Mixtures	3.61	11.00
NTU	SingGraph - Mixtures	4.31	31.82
IMS-SCU4	WavLM - Mixtures	4.94	16.72
PDL	Ensemble - Vocals	5.80	22.01
Baseline1	Wav2vec - Vocals	6.09	24.09
Baseline2	Raw - Vocals	8.84	26.11
Baseline3	Wav2vec - Mixtures	9.57	21.45
Baseline4	Raw - Mixtures	10.88	17.69

Takeaways

- SVDD offers a new and challenging test ground for audio deepfake detection
 - Training on speech data does not work well, but model designs work
 - May need specific model designs to account for special characteristics of singing voices
- Some previous findings may or may not hold, serving as a retrospect / rethinking on deepfake detection research
 - Winner of WildSVDD@MIREX challenge is a LogSpec+ResNet method pre-trained on ImageNet.

Acknowledgments

• Organizers

• Challenge participants

Schedule for the SVDD special session

- First hour: SVDD Challenge
 - (15 min) Challenge overview presentation
 - (3 x 10 min) Lightning talks from CtrSVDD winners
 - (3 x 5 min) Lightning talks from WildSVDD winners
- Second hour: Discussions on SVDD research
 - (20 min) Invited Talk: Xueyao Zhang
 - (20 min) Invited Talk: Chang Zeng
 - (20 min) Panel Discussion

Special session webpage